透鏡3D檢測之研究

指導老師:林宸生 學 生:林嘉毫、吳俊旻、何振維、韋子祈

研究理論與方法

◆透鏡曲率設計

◆幾何光學

◆ 線段投影法

◆ 光柵補償系統

◆ 漸進式二值化

◆彩色光柵投影系統
 ◆次像素

◆曲率計算

- 2 -

彩色光栅投影系统

 ◆ 當投射到物體表 面的光柵條紋有 一部份被物體的 陰影所覆蓋時, 此時便會影響到 光柵的判讀

◆利用投影彩色光
 柵將可以使物體
 更容易辨識

光柵的色彩組合可為R,G,B,1/2
R,1/2G,1/2B,1/3R,1/3G,1/3
B,1/4R,1/4G,1/4B,(1/2R+1/2G),(1/2R+1/2B),(1/2G+1/2B),(1/3R+1/3G),(1/3R+1/3B),(1/3G+1/3B)...等許多的變化。

逢甲大學自動控制工程學系 微影與光電研究室

彩色光栅投影系統(2)

為使投影出的彩色光柵每條條 紋亮度(brightness)相同,必須使 每條光柵的亮度都相等,而亮度 Bn的定義為:

 $Bn \equiv Max(R,G,B)$, $Bn \in [0,255]$

其中R、G、B為色彩三原色。 欲使每條光柵的亮度均相等, 則必須使每條光柵的Bn值相等。 而彩色光柵條紋的產生方式 可為:

隨機選擇一R值,並限制R值的 最大值為Bn

R = Random [0,255]if $R \ge Bn$, R = Bn逢甲大學自動控制工程學系 微影與光電研究室

彩色光栅投影系統(3)

隨機選擇一G值,並限 制G值的最大值為BnG = Random[0,255]if $G \ge Bn$, G = Bn

取R、G的最大值,若此值為Bn, 則B的值可以是隨機選擇的值;若 R、G的最大值不是Bn,則令B值為 Bn

$$if(Max(R,G) = Bn)$$
, $B = Random[0, Bn]$
else $B = Bn$

逢甲大學自動控制工程學系 微影與光電研究室

光學設計軟體-ZEMAX之驗證

三維輪廓量測與重建

投影機規格

攝影機及鏡頭規格

型號	PB6100	型號	SD-DNCa-C-A01
小剧壮华	DIDEP	撷取元件	SONY 1/3"
7又形仅侧	DLF 亩 万	像素	$H \times V = 768 \times 494$
投影面板	0.55" 12° DDR DMD	解析度	480 TV Lines
亮度	1500 ANSI 流明	最低照度	0.2 LUX / F1.2
縮放比	1:1.2	視訊輸出	1Vp-p / 75 Ohms
均勻度	85%	功率消耗	AC110V / 200mA
對比	2000:1	操作溫度	-10 °C ~ 50 °C
色彩	16.7萬色全彩	鏡頭	Manual Variable Focal Lenses 5-100 mm + 2X Lens
逢甲大學自動控制	间工程學系 微影與光電研究室	實驗架構	三維輪廓量測系統 - 11 -

三維輪廓量測系統(1)

三維輪廓量測系統架構圖

號透鏡)

- C. C.

逢甲大學自動控制工程學系 微影與光電研究室

三維輪廓重建系統(1)

	Fringe Analysis	
	System Load image Save image Calibration Function SubPixel Analysis Sketch All in one JD Sketch	
	-Measurement Data Standard Height 0.777 mm Lens Height 28.739 pixel Lens Curvature pixel Precision 0.027036 mm/pix Lens Height mm Lens Curvature mm	
_	光柵投影系統之軟體操作畫面	
逢甲大學自動控告	N工程學系微影與光電研究室 實驗架構 三維輪廓重建系統	

三維輪廓重建系統(2)

ZEMAX之驗證結果

電壓	焦距一程式模擬結果	焦距-ZEMAX模擬結果
0 v	-8.823	-8.824
50 v	-11.761	-11.762
100 v	-11089.843	-11302.941
120 v	20.105	20.104
140 v	9.205	9.205

電壓與焦距在不同程式的模擬結果(單位:mm)

- 10 Mar-

→ 60 lines/20 mm

三維輪廓量測-次像素

the state of the s

→ 60 lines/20 mm

實驗結果與討論

\rightarrow 60 lines/20 mm

逢甲大學自動控制工程學系 微影與光電研究室

- 18 mar-

$\rightarrow 65 \text{ lines}/20 \text{ mm}$

逢甲大學自動控制工程學系 微影與光電研究室

- 18 Mar-

$\rightarrow 65 \text{ lines}/20 \text{ mm}$

逢甲大學自動控制工程學系 微影與光電研究室

逢甲大學自動控制工程學系 微影與光電研究室

三維輪廓重建-OpenGL

三維輪廓重建-OpenGL

逢甲大學自動控制工程學系 微影與光電研究室

實驗架構

~

- 30 -

實驗結果與討論

三維輪廓重建-OpenGL

高度量測數據-60 lines/20 mm - #0

在60 lines/20 mm下標準透鏡之高度重建數據

項目	高度 (pixel)	高度 (mm)	誤差(µm)
1 (校正用)	30.294	0.777	-
2	30.003	0.770	7
3	30.254	0.776	1
4	30.261	0.776	1
程式量測精度	0.	025649 mm/pix	el

實驗架構

- 32 -

實驗結果與討論

高度量測數據-60 lines/20 mm - #1

項目	高度 (pixel)	高度 (mm)
1	34.499	0.885
2	33.999	0.872
3	34.299	0.880
4	33.899	0.869
程式量測精度	0.025649	mm/pixel
医甲大學自動控制工程學系 微影與光雷	研究室 安瓜加提	● 一 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

實驗架構

在60 lines/20 mm下1號透鏡之高度重建數據

高度量測數據-60 lines/20 mm - #2

在60 lines/20 mm下2號透鏡之高度重建數據

項目	高度(pixel)	高度 (mm)	
1	31.	136	0.799	
2	31.	952	0.820	
3	31.	379	0.805	
4	31.	404	0.805	
程式量測精度		0.025649	mm/pixel	
 圣甲大學自動控制工程學系 微影與光電	研究室	實驗架構	實驗結果與討論	- 34 -

曲率量測數據-60 lines/20 mm - #0

在60 lines/20 mm下標準透鏡之曲率重建數據

實驗結果與討論

- 35 -

項目	曲率 (pixel)	曲率 (mm)
1 (校正用)	662.026	_
2	668.336	17.142
3	663.041	17.006
4	669.898	17.182
程式量測精度	0.025649	mm/pixel

曲率量測數據-60 lines/20 mm - #1

. . . .

項目	曲率 (pixel)	曲率 (mm)	
1	944.943	24.237	•
2	958.336	24.580	
3	950.253	24.373	
4	961.063	24.650	
程式量測精度	0.025649	mm/pixel	
 雀甲大學自動控制工程學系 微影與光電	研究室 實驗架構	實驗結果與討論	- 36 -

曲率量測數據-60 lines/20 mm - #2

項目	曲率 (pixel)	曲率 (mm)
1	994.451	25.507
2	970.674	24.897
3	987.821	25.337
4	987.059	25.317
程式量測精度	0.025649	mm/pixel

在60 lines/20 mm下2號透鏡之曲率重建數據

實驗結果與討論

- 37 -

高度量測數據-65 lines/20 mm - #0

在65 lines/20 mm下標準透鏡之高度重建數據

項目	高度 (pixel)	高度 (mm)
1	33.823	0.767
2	32.944	0.770
3	33.390	0.780
4	33.656	0.787
5 (校正用)	33.247	_
6	33.121	0.774
7	33.602	0.785
8	33.909	0.769
程式量測精度	程式量測精度 0.023672 mm/pixel	
一社八里八小月及	0.023072	

逢甲大學自動控制工程學系 微影與光電研究室

實驗架構

- 38 -

實驗結果與討論

高度量測數據-65 lines/20 mm - #1

項目	高度 (pixel)	高度 (mm)
1	38.511	0.90
2	38.526	0.90
3	38.233	0.894
4	38.588	0.902
5	38.038	0.889
6	38.171	0.892
7	38.040	0.889
8	38.153	0.892
程式量測精度	0.023672 mm/pixel	

在65 lines/20 mm下1號透鏡之高度重建數據

逢甲大學自動控制工程學系 微影與光電研究室

實驗架構

- 39 -

實驗結果與討論

高度量測數據-65 lines/20 mm - #2

在65 lines/20 mm下2號透鏡之高度重建數據

項目	高度 (pixel)	高度 (mm)	
1	34.098	0.797	
2	33.998	0.795	
3	34.098	0.797	
4	34.098	0.797	
5	33.998	0.795	
6	34.198	0.799	
7	34.098	0.797	
8	34.198	0.799	
程式量測精度	0.023672 mm/pixel		
	•		

實驗架構

實驗結果與討論

- 40 -

曲率量測數據-65 lines/20 mm - #0

曲率 (pixel) **曲率(mm)** 項目 566.331 13.236 1 2 13.190 564.371 3 551.601 12.891 547.506 12.796 4 5 (校正用) 559.530 13.124 561.532 6 548.332 12.815 7 8 559.178 13.069 程式量測精度 0.023672 mm/pixel

在65 lines/20 mm下標準透鏡之曲率重建數據

逢甲大學自動控制工程學系 微影與光電研究室

實驗架構

實驗結果與討論

- 41 -

曲率量測數據-65 lines/20 mm - #1

在65 lines/20 mm下1號透鏡之曲率重建數據

項目	曲率 (pixel)	曲率 (mm)	
1	619.409	14.476	
2	619.183	14.471	
3	623.634	14.575	
4	623.834	14.580	
5	632.300	14.777	
6	630.230	14.729	
7	632.269	14.777	
8	630.509	14.736	
程式量測精度	0.023672 mm/pixel		
次田1的石利西州一和图名 旭日本山西			->

曲率量測數據-65 lines/20 mm - #2

在65 lines/20 mm下2號透鏡之曲率重建數據

- C-

項目	曲率 (pixel)	曲率 (mm)
1	688.584	16.093
2	703.157	16.433
3	707.544	16.536
4	707.544	16.536
5	703.157	16.433
6	699.244	16.342
7	694.875	16.240
8	692.943	16.195
程式量測精度	0.023672 mm/pixel	
田上與白動掀出工程與各 御影向火雨		

三維輪廓量測數據

◆量測、分析、重建時間僅需1秒

◆在高度的量測上,可將精度控制在3µm以內

參考文獻

- 1. M. de Angelis, S. De Nicola, P. Ferraro, A, finizio, G. Pierattini, T. Hessler, "An interferometric method for measuring short focal length refractive lenses and diffractive lenses", Optics Communications, Vol. 160(1-3), pp. 5-9, 1999.
- C. Quan, C. J. Tay, "Fringe projection technique for the 3-D shape measurement of a hydroformed shell", Journal of Materials Processing Technology, Vol. 89-90, pp. 88-91, 1999.
- 3. P. S. Huang, Feng Jin, Fu-Pen Chiang, "Quantitative evaluation of corrosion by a digital fringe projection technique", Optics and Lasers in Engineering, Vol. 31(5), pp. 371-380, 1999.
- 4. Juan A. Pomarico, Roberto D. Torroba, "Focal lengths measurements using digital speckle interferometry", Optics Communications, Vol. 141(1-2), pp. 1-4, 1997.
- 5. 鍾添東,廖昭仰,施宜成,"利用光學投射條紋重建實體輪廓",中國機械工程 學會第二十一屆全國學術研討會,93年。
- 張家壽,"應用數位投影疊紋法於微小尺寸表面之量測",國立臺灣大學應用力
 學研究所碩士論文,90年。
- 卓家軒,"透明玻璃間隙之光電量測方法研究與系統開發",逢甲大學自動控制 工程所碩士論文,92年。